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Abstract
Low-temperature series are calculated for the free energy, magnetization,
susceptibility and field derivatives of the susceptibility in the Ising model
on the quasiperiodic Penrose lattice. The series are computed to an order of
25 and estimates of the critical exponents α, β and γ are obtained from Padé
approximants.

PACS numbers: 05.50.+q, 61.44.Br, 64.60.−I, 64.60.Fr

1. Introduction

The problem of the relevance of disorder for phase transitions in lattice models of statistical
mechanics has attracted attention for many years and the discovery of quasicrystals [1] has
served to increase the interest in the physical properties of disordered systems. A fundamental
problem in this field is whether quasiperiodic order is strong enough to change the critical
behaviour of magnetic phase transitions. To investigate this problem we consider in this paper
a classical Ising model defined on an underlying quasiperiodic lattice.

There have been many works in this field since the late 1980s (for a review article
on aperiodic spin models, see [2]). A heuristic criterion (Harris–Luck criterion) has been
formulated [3] which relates the critical behaviour to fluctuations of the number of spin
couplings in a given region. The spatial scaling of fluctuations was described in terms of
a ‘wandering exponent’ ω which was required to exceed a threshold ωc in order to produce
a new universality class. For the majority of quasiperiodic structures used to model real
materials, ω can be calculated exactly due to the self-similarity or inflational symmetry of the
structure, yielding a value smaller than the threshold and suggesting the irrelevance of disorder.
However since numerous structures such as the rhombic sevenfold or ninefold lattices [4, 5]
exist, which are deprived of inflational symmetry and are therefore potential candidates for
novel critical behaviour, there is still a strong motivation for dealing with quasiperiodic Ising
models. Moreover, it is relatively easy to produce a two-dimensional (2D) lattice which is
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periodic in one direction and aperiodic (quasiperiodic) in the other and for which ω > ωc. This
results from the fact that 2D Ising models on such lattices are equivalent to 1D quantum Ising
models (Ising quantum chains) and it is easy to generate aperiodic Ising quantum chains with
relevant fluctuations where coupling constants are modulated according to certain substitution
rules [6].

Quasiperiodic Ising models were investigated by Monte Carlo simulations [7–10] which
at present, seem to yield the most precise estimates for the transition temperature and critical
exponents. Indeed, in [8] computations for large periodic approximants (PAs) of the Penrose
tiling (PT) [11] were carried out and obtained values for the correlation length ν and the
two-spin correlation function η exponents with two-digit precision (ν = 1.02 ± 0.02, η =
0.252 ± 0.003) which agreed with the square lattice values (ν = 1, η = 0.25). Moreover,
the non-universal critical temperature Tc has also been determined with an impressively small
error kTc = 2.398 ± 0.003.

It is worth mentioning that a novel invaded-cluster algorithm, which modifies the
temperature during the simulation towards the critical one, as opposed to standard Monte
Carlo algorithms with fixed temperature, was also applied to quasiperiodic systems [10] to
give an improved estimate of Tc. The critical exponents are not available in this case, however.

Another approach is an approximate renormalization group analysis [12, 13] which yields
poor results, however. For the PT the specific heat exponent equals α = −0.1083 versus
α = 0 for the square lattice.

Quasiperiodic Ising models were also examined by graphical expansion methods [14, 15]
and by calculating exact partition functions for PAs, obtained from the Kac–Ward determinant
[29]. In the first case, estimates for Tc and critical exponents have not been considerably
improved but this approach demonstrated a new feature, a very slow convergence of the
partition function (Z) series to its predicted asymptotic form. We also investigated the set of
zeros of Z in the complex plane (Fisher zeros), which turned out to be much more complicated
than in the square lattice case.

The Kac–Ward determinant method appeared to yield highly accurate estimates of the
critical temperature of quasiperiodic Ising models (for example, kTc = 2.397 820(7) for the
PT). Moreover, within this framework it was possible to construct a 2D Ising model with
relevant fluctuations, i.e. for which ω > ωc, which shows up another novel feature, namely
the divergence of high temperature series [17]. This example is interesting because it points
out that in some cases the reliability of methods for extracting critical values from analysis
of a series expansion, such as the Padé- or differential-approximants methods [16] can be
questioned. An inspection of the Fisher zeros furnished the explanation, since it appeared that
the moduli of some complex zeros were smaller than the modulus of the physical singularity
(real zero) and thus the complex zeros, rather than the real zero, were limiting the region of
convergence of the series.

In this paper it is not our purpose to improve on estimating Tc or α for quasiperiodic Ising
models since, due to the slow convergence of series expansions [29], a large, inaccessible
number of terms is needed to make progress in this field. Instead, we aim at generalizing the
series expansion approach to the case of non-zero field quasiperiodic Ising or Potts models
[18] and provide alternative estimates of the magnetic exponents, β, and γ . Moreover, there
is the problem of a disorder-driven ‘softening’ of the first-order phase transition in the Q-state
Potts model for Q > 4, which attracted much attention recently; it has been studied by Monte
Carlo simulations on random-bond lattices [19, 21], deterministic lattices [20], quenched
ensembles of random graphs [23] and by high-temperature series expansion methods on
random-bond lattices [22], and which can be investigated in an alternative way within our
framework.
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2. The finite lattice expansion method for Ising models

The problem consists of calculating the partition function Z(G) of an Ising model on a lattice
G by series expansion. The partition function with field B and coupling constant J is defined
in the usual way:

Z(G) =
∑
{σj }

exp β


−J

∑
〈j,k〉

�(σj , σk) − B

N∑
j=1

�(σj , 0)




where �(σ1, σ2) =
{

0 σ1 = σ2

1 otherwise
(1)

where the sum over spin configurations {σj } = {σ1, σ2, . . . , σN } consists of N sums each of
which runs over σj = {1, 2}. Starting from cluster integral theory [24, pp 42–6, p 73] one
can formulate a free energy (F) expansion in terms of connected graphs for a wide range of
models from statistical mechanics. In particular, for the non-zero field Ising model or the
Q-state Potts models (the generalization of the former one with Q values of spin at each site)
the expansion on a lattice G reads

log Z(G) =
∑

r

(Cr; G)kr(w) where w = tanh βJ (2)

where the sum on the right-hand side runs over connected graphs Cr from G. The quantity
(Cr; G) denotes the embedding number of Cr in G, counting the number of ways Cr can be
embedded in G. Finally, the weight functions kr(w) depend only on Cr , not on G. Making use
of the independence of weights kr(w) from the lattice, we can write equation (2) substituting
each connected graph Cr for G, solve the system of equations for the weights and plug in the
results to equation (2). We obtain

log Z(G) =
∑
gr

ar log Z(gr) (3)

where ar = ∑
p(gp; G)br,p and br,p is inverse to the matrix of embedding numbers, i.e.

br,p = (gr; gp)−1. The sum on the right-hand side in (3) runs over gr from a subset of all
connected graphs. It turns out [25] that the graph gr can furnish a non-vanishing contribution,
i.e. ar �= 0, if and only if it is an overlap of the embeddings of two other graphs having
non-vanishing contributions. The construction of graphs therefore runs as follows: we start
from several ‘fairly large’ graphs and construct all possible overlaps of their embeddings in the
lattice in a recursive way. This limits the number of contributing graphs considerably, when
compared to expansion (2), but, except for regular lattices such as the square or honeycomb
lattice, still leaves the problem of determining gr and the contributions ar open. Indeed, for
the square lattice where gr are rectangles, ar can be explicitly expressed via the ratio of the
graph side lengths [26], and the order to which the expansion is correct is in direct connection
with the perimeter length of the largest graphs under consideration. For the quasiperiodic
lattices which we wish to investigate, the problem is not so simple. In what follows we focus
on the PT [11] and present the details of the expansion method for it in the next section.

3. Calculation of series expansion for the Penrose tiling

The PT is an aperiodic tiling of a plane by two kinds of rhombi of unit length side with angles
2π/5 and 4π/5, respectively. A discussion of the methods of generation and geometrical
properties of this tiling can be found in [15]; here we only mention a particularly useful
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feature, namely that embedding numbers of finite patches from this tiling can be calculated
exactly and take the form n + mτ where τ = (

√
2 + 1)/2 is the golden number and n,m are

rational numbers. The calculation of the series expansion consists, therefore, of the following
steps:

1. Choose an initial set of ‘fairly large’ graphs which are expected to be large enough that
every connected subgraph of the underlying tiling with perimeter length not larger than
a given threshold 2L can be embedded in one of them. While on the square lattice this
condition is satisfied by all possible rectangles with perimeter length 2L, on the PT things
are worse due to the lack of periodicity of the tiling. Moreover, as opposed to the square
lattice, graphs in the PT can have different ‘boundary line fillings’, i.e. there are different
graphs having the same boundary line [15]. Knowing that the PT contains eight different
vertex types, i.e. different site environments related to the nearest neighbours, we cut out
appropriately large patches around each vertex type, obtaining eight patches, and found
all possible ‘boundary line fillings’. There is still a lot of ambiguity in this procedure
since a patch is not uniquely determined by the vertex type of its central site. It would be
more correct to take all possible higher-order vertex types [27], i.e. m-order vertex types
related to neighbours located not further than m edge lengths from the site, but since their
number grows quite rapidly with the order, the initial set of graphs would be too numerous
and the generation of overlaps (see the next item) too time consuming.

2. Generate all possible overlaps of embeddings of the initial graphs in the tiling. It is difficult
to estimate how the time of the generation depends on the number of initial graphs. Let us
say a couple of words about this, however. We group graphs into generations so that the
initial set of graphs constitutes the zeroth generation and the nth generation consists of
overlaps of graphs from the (n − 1)th and zeroth generations. Since the time for creating
the nth generation depends on the product of numbers of graphs g(0) from generation
zero and g(n−1) from generation (n−1) starting from a too numerous zeroth generation
should be avoided. The total number of overlaps grows rather slowly with g(0), for large
g(0), and most of the computing time will be devoted to checking and rejecting graphs
which occurred before. On the other hand, if we took too few initial patches, the covering
of the lattice with them would be incomplete, there would be plenty of ‘holes’ not covered
by any of the patches, and thus the series expansion would be marked by error. The rule
of thumb is to take g(0) not larger than 20 and choose the patches in such a way that their
interiors differ as much as possible.

Again, on the square lattice it is immediately clear that the overlaps are rectangles,
because every rectangle can be constructed as an overlap of two other rectangles, whereas
on the PT the shapes of graphs and their quantity depend on the initial set. To make
things worse, we are not even sure that we obtain star graphs [24, pp 1–16], i.e.,
graphs without articulation points, because the initial graphs are not necessarily convex.
Connected graphs consisting of multiple components will cause some difficulties due to
the calculation of partition functions by the transfer-matrix method (see following items).

3. Generate all possible ‘decorations’ of graphs constructed in the previous step. Boundary
conditions are important for calculating partition functions in the finite lattice method
(FLM). Since expansion (3) is a low-temperature expansion, i.e. graphs gr represent
excitations from the ground state—they can be regarded as groups (‘islands’) of excited
spins surrounded by a sea of unexcited, parallel spins—it is essential to know the graph
decoration, i.e. vertex types of all sites including those at the boundary, when calculating
partition functions. On regular lattices this problem is sorted out automatically; a finite
portion from the lattice determines uniquely vertex types of all its sites, whereas finite
portions from quasiperiodic lattices can have different decorations. This is in a way
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similar to the issue of different ‘boundary line fillings’ discussed before; a finite patch of
a quasiperiodic lattice does not determine uniquely vertex types of sites on its boundary.

Here we refrain from describing how the ‘boundary line fillings’ or ‘decorations’ of
finite graphs are constructed. It would require a detailed discussion of construction
methods of quasiperiodic lattices, in particular notions such as the ‘cut-and-project’
method or acceptance domains of graphs [32]. Let us only mention that there is an upper
bound on the number of ‘decorations’ of an arbitrary graph. In other words, an arbitrary
graph can be embedded in the quasiperiodic lattice in not more than several, usually five,
different ways. Putting it in another way, we do not have to worry that the set of decorated
graphs will grow to enormous quantities, which would make the procedure described here
inapplicable in practice.

4. Calculate the contribution ar of graph gr in (3) in the following recursive way:

ar = (gr; G) −
∑
r⊂p

ap(gr ; gp) (4)

where the sum on the right-hand side runs over all graphs gp in which gr can be embedded.
5. Calculate logarithms of partition functions log Z(gr) by the transfer-matrix method.

The transfer-matrix method. Here we have to distinguish two cases, namely the case when
the graph has no articulation points (star graph) and the contrary (multicomponent graph).
The latter is undoubtedly more complicated but fortunately it turns out that it takes place
only in a minority of the graphs under consideration. Let us firstly discuss the case of a
star graph. We can define a perimeter of the graph, i.e. a line consisting of edges each of
which belongs only to one rhombi. The sum over spin configurations can be performed by
moving a boundary line across the graph. At each stage the boundary line goes through a
number, say k, of sites. For the Q-state Potts model we have Qk different spin configurations
on the boundary line. Now we define a Qk-dimensional vector Z(σ) consisting of partition
functions calculated for the patch composed of sites from the boundary line, with a given
spin configuration σ = {σ1, σ2, . . . , σN } assigned to them, and sites already traversed by the
boundary line. Let us define x̃ = exp(−βJ ) and ỹ = 1 − exp(−βB/2). Then the initial
values of Z(σ) are given by

Z(σ) = x̃a(1 − ỹ)b (5)

where

a =
N−1∑
p=1

�(σp, σp+1) +
N∑

p=1

N (p)�(σp, 0) b = 2
N∑

p=1

�(σp, 0) (6)

and N (p) denotes the valence of the boundary site p diminished by the number of edges from
the undecorated graph which emanate from this site (see item 3 in section 3).

Shifting the boundary line corresponds to generating a new vector Z′(σ ′) of partition
functions from the old vector Z. There is a lot of ambiguity in shifting the boundary line
by a given number of tiles. In our case it amounts, however, to considering only three
kinds of movements, by one tile, by two tiles and a shift between two given boundary line
configurations, which we discuss below. Placing the initial boundary line on the perimeter
of the graph and moving it at each stage by a certain number of tiles, see figure 1, we have
performed the sum over all configurations after reaching the final position of the boundary
line (also lying on the perimeter).

Now we discuss the details of updating the partition functions for the two kinds of
boundary line movements, see figure 2.
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Figure 1. Shifting of a boundary line through a graph, from the initial (leftmost picture) to the
final (rightmost picture), corresponding to calculating the partition function by the transfer-matrix
method.

J

J–1 J+1

J

P+1 P+2

P P+3

L

P+1 P+2

L+1

Figure 2. Two kinds of movements of the boundary line, by one tile (left) and by two tiles (right).
In both cases, the lower part of the figure shows the old boundary line and the upper part the
updated new boundary line. The labels of the circle-marked sites denote the number of the site
both before (the lower part) and after updating (the upper part).

3.1. One-tile movement

For 1 � J � N we have

Z′(σ ′) = x̃a(1 − ỹ)b
q∑

σJ =1

Z(σ) (7)

where a = �(σ ′
J−1, σ

′
J ) + �(σ ′

J , σ ′
J+1) and b = f�(σ ′

J , 0), f = 2.

3.2. Two-tile movement

For 1 � L < P � N we have

Z′(σ ′
ρ) = x̃a(1 − ỹ)b

q∑
σP+1=1

q∑
σP+2=1

Z(σ) (8)

where a = �(σ ′
L, σ ′

P +1) + �(σ ′
P +1, σ

′
P +2) + �(σ ′

P +2, σ
′
L+1) + �(σ ′

P , σ ′
P +3) and b =

f1�(σ ′
P +1, 0) + f2�(σ ′

P +2, 0) where f1 = f2 = 2, and the new spin configuration is permuted
with respect to the old one σ ′

ρ = {σ ′
ρ1

, σ ′
ρ2

, . . . , σ ′
ρN

} and

ρp =




p p � L

P + 1 p = L + 1
P + 2 p = L + 2
p − 2 p � L + 3

. (9)

3.3. Shifting the boundary line to the final position

In most cases it is possible to displace the boundary line from the initial to the final position
by a sequence of the movements defined above. Sometimes, however, we arrive at a dead end
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Figure 3. A boundary line (middle picture) which cannot be pushed forward by performing one
of the movements discussed above. The initial and the final line configuration are shown at the left
and at the right, respectively.

because none of the movements can be done, see figure 3. In this case, we have to shift the
line directly to its final position by summing over all the spins which have not been taken into
account yet. The formal prescription for updating Z(σ) in this case reads

Z′(σF1 , . . . , σF9

) =
∑

σs1 ,σs2 ,σs3

x̃a(1 − ỹ)bZ
(
σB1 , . . . , σB9

)
(10)

where a = ∑6
j=1 �

(
σej,1 , σej,2

)
and b = 2

∑3
j=1 �

(
σsj

, 0
)

and B = {1, 16, 15, 14, 13,

18, 19, 20, 9}, F = {1, 16, 15, 14, 13, 12, 11, 10, 9}, e = {(9, 10), (10, 11), (11, 12),

(12, 13), (12, 9), (9, 18)} and s = {12, 11, 10} denote the current and the final boundary
lines, the edges and the sites, respectively, which were not taken into account yet.

In principle, it could be possible to consider an alternative movement where the boundary
line changes length. In the case shown in figure 3 this corresponds, for example, to a
contraction of the boundary line B which merges into a line B ′ shorter by two edges,
where F = {1, 16, 15, 14, 13, 18, 9}. The updated partition-functions-vector has a different
dimension, smaller by Q2, and the updating recipe reads

Z′(σB ′
1
, . . . , σB ′

7

) = x̃a(1 − ỹ)b
∑

σs20 ,σs19

Z
(
σB1 , . . . , σB9

)
(11)

where a = �(σ9, σ18) and b = �(σ20, 0) + �(σ19, 0). There is, however, one problem
connected with such movements. At some stage, i.e. after a couple of update-steps,
contractions of the boundary line have to be followed by its expansions. Moreover, there
must be as many expansions as there were contractions because the boundary line in the end
position has the same length as it had at the start. In the case shown in figure 3, such a sequence
of boundary lines exists and it reads

{1, 16, 15, 14, 13, 18, 19, 20, 9} �⇒ {1, 16, 15, 14, 13, 18, 9}
�⇒ {1, 16, 15, 14, 13, 12, 9} �⇒ {1, 16, 15, 14, 13, 12, 11, 10, 9}.

There is no certainty that in the generic case such a sequence of boundary lines exists,
though. Therefore in our calculations we refrained from altering the dimension of the partition-
functions-vector and worked only with boundary lines of fixed length. Moreover, the dead-end
case occurs only in very few cases; from 264 relevant graphs in our computations it happened
only in less than 9 cases all of which were graphs of relatively small size.

Can the transfer-matrix formalism (tmf) also be applied to the case of a multicomponent
graph? The answer is affirmative because every connected graph can be dissected into its star



7760 P Repetowicz

σ1

σ

σ2

3

A B

C

D

1

2
3 4

5

6

7

8

910

11

12

Figure 4. A multicomponent graph consisting of four star components (left) and the perimeter of
a star graph with two isolated sites on the initial boundary line (consisting of sites from 1 to 7) and
three isolated sites on the final boundary line (sites from 7 to 12) (right). The isolated sites are
marked with circles.

graph components for which the tmf is applicable. Since, however, star graph components
share certain sites at their boundaries, which we call in the following isolated sites, we have
to calculate a whole set of partition functions with given spin values at isolated sites and
combine them to get the partition function of the whole graph. In the following we assume
the simplest case, namely, that every isolated site is shared by exactly two star components.
This was indeed the case by our overlap graphs. Let us explain the procedure for the case of
a graph depicted in figure 4. The partition function Z can be built up from partition functions
ZA(σ1), ZB(σ1, σ2, σ3), ZC(σ3) and ZD(σ2) corresponding to star components A,B,C and
D with isolated spins σ1, σ2 and σ3

Z =
∑

σ1,σ2,σ3

ZA(σ1)ZB(σ1, σ2, σ3)ZC(σ3)ZD(σ2). (12)

Now, the problem consists in calculating partition functions for a star graph with specified
spins at isolated sites located at the boundary. Assume that we have p isolated sites
jk, k = 1, . . . , p, located at the initial boundary line and q isolated sites lk, k = 1, . . . , q , at the
final boundary line, respectively, see figure 4. The calculation of Z

(
sj1 , . . . , sjp

, sl1 , . . . , slq

)
amounts to repeating the tmf Qp+q times and modifying the initial and the final partition
function set by setting certain entries to zero. We replace the initial partition function set by[

p∏
k=1

δ
(
σjk

, sjk

)]
Z(σ1, . . . , σN) for given sj1 , . . . , sjp

(13)

and the final partition function set is multiplied by
∏q

k=1 δ
(
σlk , slk

)
again for a given spin

configuration sl1 , . . . , slq . Another slight modification which is required consists in setting the
factors f, f1 and f2 entering in the exponent b in equations (7) and (8) according to whether
the site is isolated (one) or not (two).

4. Series expansion of the free energy, magnetization and field derivatives of the
magnetization

We have performed calculations for a set of graphs constructed in the following way. We cut
off seven fairly round-shaped patches from the PT so that the central sites of the patches had
different vertex types and their perimeter lengths were not larger than 40 edge lengths. Then
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Figure 5. Patches from the Penrose lattice used as input for the FLM calculations. The columns
contain all possible ‘boundary line fillings’ of seven patches the central sites of which correspond
to seven different vertex types.

we enlarged the set of patches by all possible ‘boundary line fillings’ obtaining in effect 14
patches, see figure 5. In the next step, we constructed all possible graphs contributing to the
expansion in the recursive way described in section 3. Their number turned out to be 8688.
This part of computations was rather tedious, up to 2 weeks on a SunOS machine, because
in generating graph overlaps many graphs turned up repeatedly and had to be rejected. In the
next step we generated ‘decorations’ of graphs, i.e. we determined vertex types of all sites of
the graph including those on its boundary (see item 3 in section 3). Since the graphs could
have several decorations, the number of graphs we have to deal with increased to 36 480.
Now we were ready to compute the coefficients ar entering in (3) which appeared to be
different from zero only for a small fraction of all graphs, namely for 264 graphs. This is
not a surprising result since on the square lattice the vast majority of rectangles used in the
expansion yields zero coefficients as well [26]. Fortunately, most of the relevant graphs here
were star graphs (only 30 graphs did not have this property) so we could easily compute the
free energies log Z(gr) entering in (3) in the way described in section 3. There were, however,
some awkward multicomponent graphs for which partition function computations were more
tedious. The series expansion is shown beneath.

After reordering the expansion (3), i.e. collecting together terms with the same power of
ỹ, the free energy F(x̃, ỹ) takes the form

F(x̃, ỹ) = log Z(G) = F0(x̃) + F1(x̃)ỹ + F2(x̃)ỹ2 + · · · =
∞∑

n=0

Fn(x̃)ỹn. (14)
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Quantities such as the spontaneous magnetization M(x̃), susceptibility χ(x̃) and field
derivatives of the susceptibility χ(n)(x̃) = dnχ(x̃)/dỹn can be expressed as linear
combinations of the polynomials Fn(x̃)

M(x̃) = dF(x̃, ỹ)/dB|B=0 = F1(x̃)

χ(x̃) = d2F(x̃, ỹ)/dB2|B=0 = 2F2(x̃) − F1(x̃)
(15)

χ(1)(x̃) = d3F(x̃, ỹ)/dB3|B=0 = 6F3(x̃) − 6F2(x̃) + F1(x̃)

χ(2)(x̃) = d4F(x̃, ỹ)/dB4|B=0 = 24F4(x̃) − 36F3(x̃) + 14F2(x̃) − F1(x̃).

5. Verification of correctness of the computed expansion

There is a duality relation connecting the low-temperature expansion of the Ising model on the
lattice G to the high-temperature expansion on the dual lattice D, which takes the following
form:

ZG(x, y) = exp β(MJ + NB)Z̃G(x, y) = 2N(cosh βJ)M(cosh βB)NZ̃D(w, h) (16)

where the low-temperature variables are x = exp{−2βJ }, y = exp{−βB} and the high-
temperature ones are w = tanh{βJ }, h = tanh{βB}. In the field-free case h = 0, the high-
temperature expansion of Z̃D(w, 0) can be expressed as the square root of the determinant
of a 2M × 2M complex matrix [15, 28], which for periodic lattices amounts to calculating a
finite-dimensional determinant, the dimension of which is of the order of the size of the unit
cell. Therefore, the free energy expansion in variable x can be calculated by taking logarithms
of equation (16):

F = lim
N−→∞

1

N
log ZG(x) = log 2 − q

4
log(1 − w2) + log Z̃D(w) (17)

where q = limN−→∞ 2M/N is the mean coordination number. The expansion of the last term
on the right-hand side

log Z̃D(w) =
∞∑

n=3

gnw
n (18)

is obtained from Kac–Ward determinants for large enough PAs of the Penrose lattice, see [15]
for a detailed explanation. In table 2, we show the expansion coefficients gn for successive
PAs together with the coefficients of F0(x) (see (14)) obtained by the FLM. The data for
the highest approximants are quite close to those for the FLM; the relative discrepancies for
n = 3, . . . , 21 are equal to −12.2%, −0.2%, 5.3%, −10.2%, −15.6%, −21.0%, −6.2%,
47.7%, −0.4%, −7.8%, −6.6%, 8.8%, 18.8%, 0.6%, −10.5%, −15.0%, −16.1%, −11.9%,
−10.1% and in most cases do not exceed 10%. In addition, both data sets depend on n in
a similar way. Indeed, assuming known values for the critical point xc = 0.434 269 and the
critical exponent α = 2, we define the sequence rn in the following way:

rn = gn/gn−1 − 1/xc(1 − (α + 1)/n). (19)

This sequence approaches zero, rn −→ 0, for large n, see [24, pp 87–199]. If we now compare
the sequences from both the PA coefficients and the FLM coefficients, we see that the relative
discrepancies except for n = 5, 10, 12 are all smaller than 10% as well.

The lowest coefficients of our expansions can also be calculated exactly by counting
graphs on the dual Penrose lattice. Here we confine ourselves to the free energy and the
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(5 - 3τ)Ν (2 − τ)Ν

Figure 6. Graphs from Penrose lattice contributing to the coefficient h3,1 and their embedding
numbers expressed through τ = (

√
2 − 1)/2. The dual graphs are constructed by connecting

midpoints of rhombi abutting at bonds terminated by filled circles.

Table 1. Expansion coefficients of the magnetization M(x), susceptibility χ(x) and its field
derivatives χ(1)(x), χ(2(x) obtained from the FLM.

M(x) χ(x) χ(1)(x) χ(2)(x)

g3 −1.182 2.364 −4.728 −38.414
g4 −0.180 0.361 0.721 −5.861
g5 −1.255 3.989 −9.457 −67.231
g6 −3.706 15.680 −39.622 −268.284
g7 −10.711 64.593 −172.355 −1121.644
g8 −14.694 123.316 −340.560 −2162.536
g9 −13.853 171.487 −486.757 −3032.051
g10 −17.478 284.234 −817.746 −5046.599
g11 −77.4685 1090.3969 −3116.2537 −19322.1507
g12 −250.04 3723.64 −10670.9 −66041.4
g13 −514.05 8998.96 −25968.8 −159951.9
g14 −797.74 17776.65 −51734.5 −316815.7
g15 −1473.51 39523.94 −115624.8 −705571.7
g16 −3899.04 107019.97 −313261.8 −1910877.8
g17 −9661.10 278241.01 −815400.8 −4969991.0
g18 −18945.45 633794.24 −1863491.8 −1133297.3
g19 −33814.06 1387869.95 −4.095981.7 −2484688.6
g20 −70998.11 3263830.44 −9649495.1 −5846579.9
g21 −172967.34 8082525.39 −23901641.5 −144796341.7
g22 −401040.95 1957029.14 −57908792.2 −350667957.7
g23 −848957.34 45837936.7 −135815895.5 −821699397.1
g24 −1794310.13 107642260.6 −319338161.6 −1930404487
g25 −4051809.18 258546263.5 −767535172.1 −4637671710

magnetization expansions. We compute their first four non-zero coefficients and show that
they are indeed close to those from tables 1 and 2. We start from the low-temperature expansion

xM/2yNZG(x, y) = Z̃G(x, y) =
∑
n,m

hn,mxny2m (20)

with hn,m counting graphs, in general multicomponent graphs, from dual lattice consisting of
m sites and n bonds on the perimeter. It is readily seen from figures 6–9 that for the Penrose
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(-8 + 5τ)Ν (-3 + 2τ)Ν (13 - 8τ)Ν 2 x
(-8 + 5τ)Ν

Figure 7. The same as above, corresponding to coefficients h4,1 (three on the left) and h5,1 (last
on the right).

Table 2. Expansion coefficients for free energy (18) for PAs m = 3, . . . , 9 of the dual Penrose
lattice with M edges in the unit cell. In the right-most column are coefficients obtained by the finite
lattice expansion. The entries marked by ‘–’ denote the case where, due to large computational
effort, no data were available. The numbers gn approach the expansion coefficients for the dual
Penrose lattice when m −→ ∞.

m 3 4 5 6 7 8 9

2M 304 796 2084 5456 14284 37396 97904
g3 0.5132 0.5176 0.5259 0.5279 0.5279 0.5277 0.5266 0.5910
g4 0.1053 0.1106 0.0940 0.0902 0.0902 0.0906 0.0900 0.0902
g5 0.4868 0.4824 0.4722 0.4707 0.4716 0.4672 0.4712 0.4460
g6 0.8355 0.8116 0.8234 0.8262 0.8262 0.8273 0.8207 0.9047
g7 1.5658 1.5477 1.5873 1.5894 1.5858 1.5467 1.5746 1.8206
g8 1.3289 1.3518 1.3580 1.3596 1.3587 1.3144 1.3443 1.6272
g9 0.7368 0.7605 0.6379 0.6452 0.6551 0.6159 0.6483 0.6883
g10 1.0987 0.7286 0.6180 0.6078 0.6054 0.5948 0.5732 0.2998
g11 5.5921 4.8492 5.0768 5.0249 4.9812 4.7844 4.8631 4.8807
g12 14.3213 14.7944 15.2147 15.2147 15.1629 14.4285 14.8233 15.9759
g13 24.0789 26.4623 26.4607 26.5257 26.6334 25.1886 – 26.8614
g14 33.3618 32.9548 32.0010 31.9245 32.0060 29.5740 – 26.979
g15 58.9491 50.7568 48.7386 48.0850 47.7786 42.8330 – 34.7744
g16 134.8618 129.4246 128.2087 127.5097 127.0104 115.1099 – 114.4562
g17 270.2105 287.3266 291.4299 292.4663 292.7278 269.0166 – 297.2675
g18 413.0614 427.7404 432.9875 435.5210 436.5489 398.7356 – 458.5212
g19 573.6842 495.4975 474.8081 474.0257 473.8073 415.9446 – 482.8437
g20 1105.3993 928.3412 872.2088 866.5213 864.7229 753.3294 – 843.1892

lattice the non-zero coefficients take following values:

h3,1 = (7 − 4τ )N h4,1 = (−8 + 5τ )N

h5,1 = (10 − 6τ )N h5,2 = (−16 + 10τ )N

h6,1 = (−21 + 13τ )N h6,3 = (−8 + 5τ )N
(21)

h6,2 = (22 − 13τ )N + (7 − 4τ )N((7 − 4τ )N − 1)

h7,1 = (13 − 8τ )N h7,4 = (−8 + 5τ )N

h7,3 = (79 − 48τ )N h7,2 = (−63 + 39τ )N + (7 − 4τ )(−8 + 5τ )N2.

Let us note that disjoint, two-component graphs (figures 9–10) also contribute to coefficients
h6,2 and h7,2, thus the coefficients are second degree polynomials in N.
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(-8 + 5τ)Ν (-21 + 13τ)Ν

Figure 8. Graphs contributing to the coefficients h6,3 (left) and h6,1 (right).

2 x
(-3 + 2τ)N

2 x
(26 - 16τ)N

2 x
(-21 + 13τ)N

5 x
(18/5 - 11/5τ)N

1/2 x (7 - 4τ)Ν [(7 − 4τ)Ν − 1]

Figure 9. Graphs contributing to the coefficient h6,2.

2 x
(-21 + 13τ)N

2 x
(13 - 8τ)N

3 x
(13 - 8τ)Ν

(−8 + 5τ)(7 − 4τ)Ν∗Ν
− 2(−8 + 5τ)Ν

Figure 10. Graphs contributing to the coefficient h7,2.
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2 x
(26 - 16τ)Ν

2 x
(26 - 16τ)Ν

1 x
(26 - 16τ)Ν

1 x
(26 - 16τ)Ν

2 x

(-21 + 13τ)Ν
2 x

(-21 + 13τ)Ν
2 x

(-21 + 13τ)Ν
1 x

(13 - 8τ)Ν

5 x
(18/5 - 11/5τ)Ν

5 x
(18/5 - 11/5τ)Ν

Figure 11. Graphs contributing to the coefficient h7,3.

(13 - 8τ)Ν (-8 + 5τ)N

Figure 12. Graphs contributing to the coefficients h7,1 (left) and h7,4 (right).

If we now insert the coefficients from (21) into the definitions of the magnetization M(x)

and the susceptibility χ(x)
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Figure 13. Plots of residues rn (19) as a function of 1/n for the free energy (left) and the
magnetization (right) on the Penrose and the square lattice, respectively. In both cases we took the
critical exponents α = 2 and β = 1/8.

M(x) = 1

N

d log[ZG(x, y)]

dB

∣∣∣∣
B=0

= 1 − 1

N
y

d log[Z̃G(x, y)]

dy

∣∣∣∣
y=1

(22)

χ(x) = 1

N

dM(x)

dB

∣∣∣∣
B=0

= 1

N
y

d

dy
y

d log[Z̃G(x, y)]

dy

∣∣∣∣
y=1

we obtain following expansions:

F(x) = 0.5279x3 + 0.0902x4 + 0.4721x5 + 0.8262x6 + 1.583 59x7 + O(x8)

M(x) = 1 − 1.0557x3 − 0.1803x4 − 1.3049x5 − 3.4164x6 − 9.252 33x7 + O(x8)

χ(x) = 2.1115x3 + 0.3607x4 + 4.0526x5 + 14.6099x6 + 55.6843x7 + O(x8)

χ(1)(x) = 4.2229x3 + 0.7214x4 + 13.8761x5 + 64.6563x6 + 341.449x7 + O(x8)

which conform quite well to the values from table 1. Indeed, the relative differences between
both sets of coefficients do not exceed 10% in any case.

6. Asymptotic analysis of the series expansions

Now the problem consists in extracting critical exponents from the obtained expansions.
The simplest approach, the ratio method, in which one examines the asymptotically linear
dependence of ratios gn/gn−1 (19) on 1/n and obtains xc and α from linear regression, is
inapplicable in this case because of the slow convergence of series. Indeed, the residues rn

(19) are much larger than those for the square lattice and alternate in sign, see figures 13
and 14, that makes the asymptotic analysis difficult. This approach requires knowledge of xc

which is known from other works [8, 29] only with a limited accuracy. Applying the Padé
method gives much more satisfactory results. Assuming that our thermodynamic functions
F(x) behave in the vicinity of the critical point xc as F(x) � (1 − x/xc)

−αA(x), it is readily
seen that functions G0(x) and G1(x) behave asymptotically as follows:

G0(x) = d

dx

(
log

dF(x)

dx

)/
d

dx
(log F(x)) � α + 1

α
+ O(x − xc) (23)

G1(x) = (x − xc)
d

dx
(log F(x)) � α + O(x − xc). (24)

Constructing Padé approximants to G0(x) and G1(x) and evaluating them at x = xc =
0.434 269 usually yields a reasonable estimation of α, even if xc is only known with a
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Figure 14. As before for the susceptibility (left) and the field derivative of susceptibility (right).
In both cases we took the critical exponents γ = −7/4 and δ = −29/8.

Table 3. Estimates of the magnetization critical exponent β by means of Padé approximants [n,m]
to functions G0(x) and G1(x) (24) constructed from the expansion to an order of 20 for the square
and Penrose lattice, respectively. Entries marked by asterisks differ strongly from square-lattice
exponents.

Approximant
[n, n − 1] [n, n] [n, n + 1]

Penrose Square Penrose Square Penrose Square

n G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x)

8 0.146 0.133 0.125 0.125 0.138 0.131 0.125 0.125 0.138 0.137 0.125 0.125
9 0.137 0.172∗ 0.125 0.125 0.138 0.129 0.125 0.125 0.138 0.130 0.125 0.125

10 0.138 0.130 0.125 0.125 0.138 0.129 0.125 0.125 0.138 0.130 0.125 0.125
11 0.136 0.130 0.125 0.125 0.138 0.129 0.125 0.125 0.138 0.139 0.125 0.125
12 0.138 0.663∗ 0.125 0.125 0.138 0.131 0.125 0.125 0.138 0.133 0.125 0.125
13 0.137 0.133 0.125 0.125 0.138 0.133 0.125 0.125 0.134 0.133 0.125 0.125
14 0.170∗ 0.132 0.125 0.125 0.134 0.133 0.125 0.125 0.134 0.133 0.125 0.125
15 0.125 0.133 0.125 0.125 0.150 0.131 0.125 0.125 0.146 0.531∗ 0.125 0.125

Table 4. As before for the susceptibility critical exponent γ .

Approximant
[n, n −1] [n, n] [n, n + 1]

Penrose Square Penrose Square Penrose Square

n G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x) G0(x) G1(x)

15 −0.659∗ −1.678 −1.742 −1.748 3.047∗ −1.56 −1.742 −0.001∗ −1.273 −1.363 −1.743 −1.749
16 −2.128 0.321∗ −1.744 −1.749 −3.458∗ −1.36 −1.742 −1.749 −2.537∗ −1.363 −1.742 −1.749
17 −2.733∗ −1.259 −1.742 −1.749 −4.931∗ −3.859∗ −1.742 −0.001∗ −1.642 −1.244 −1.757 −1.748
18 −2.002 −1.131∗ −1.737 −1.748 −1.875 −1.035∗ −1.736 −1.748 −1.328 −1.527 −1.736 −1.748
19 −1.972 −1.164∗ −1.736 −1.747 −0.482∗ −1.455 −1.736 0.∗ −0.865∗ −1.509 −1.732 −1.747
20 −0.958∗ −2.219 −1.738 −1.747 −0.592∗ −0.589∗ −1.716 −1.747 −1.129∗ −0.387∗ −1.716 −1.747
21 −1.664 −0.404∗ −1.716 −1.747 3.342∗ −0.558∗ −1.716 0.∗ −2.749∗ −0.712∗ −1.699 −1.588

moderate accuracy. Results of this analysis, shown in tables 3 and 4, are fairly close to the
square lattice exponents. The sequence of Pade approximants is quite stable, except for few
cases marked by asterisks. Whenever the square lattice results converged, Penrose data did as
well.
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Table 5. Biased estimates of the critical point xc = exp(−2βc) obtained from the magnetization
expansion to an order of 20 for the square and Penrose lattice, respectively.

Approximant
[n, n − 1] [n, n] [n, n + 1]

n Penrose Square Penrose Square Penrose Square

8 0.432 0.414 0.433 0.414 0.432 0.414
9 0.432 0.414 0.432 0.414 0.432 0.414

10 0.432 0.414 0.432 0.414 0.432 0.414
11 0.443 0.414 0.435 0.414 0.434 0.414
12 0.433 0.414 0.433 0.414 0.433 0.414
13 0.434 0.414 0.433 0.414 0.434 0.414
14 0.431 0.414 0.435 0.414 0.432 0.414

On the other hand, we can compute biased estimates of xc, assuming known values
of critical exponents. Indeed, the appropriate poles of Padé approximants to the function
(F (x))1/α should give rapidly convergent sequence of estimates of xc. These sequences for
the magnetization expansion are shown in table 5. In most cases, the data do not deviate
more than 1% from the exact values xc = 0.434 269 (Penrose lattice [29]) and xc = √

(2) − 1
(square lattice).

We can therefore claim that the data support the claim that the quasiperiodic Ising model
under consideration belongs to the square lattice (Onsager) universality class.

7. Concluding remarks and outlook

The aim of this work was to analyse a quasiperiodic Ising model by means of graphical series
expansions. Although the work is only devoted to the Penrose lattice, the same formalism can
be easily applied to other 2D quasiperiodic lattices obtained by the ‘cut-and-project’ method
from higher dimensions, i.e. lattices with octagonal or dodecagonal symmetry [31]. We
calculated low-temperature expansions of the free energy, magnetization and the susceptibility
to an order of 25 and extracted the respective critical exponents. We note that we did not obtain
exact values for the coefficients and the exponents. Both of them are marked by errors, which
however do not exceed 15% in most cases. This feature is rather unusual for series expansions
on regular lattices where the coefficients are exact to a given order which is determined by the
size of patches used for calculations. This deserves further comment. Following are the two
sources of errors in our method:

(1) There are always graphs which cannot be embedded in any of the patches used in the
calculations.

(2) The FLM consists in covering and probing the lattice with a finite set of patches. Since
the lattice is irregular, in particular, not periodic, there can always be ‘holes’, i.e. groups
of sites, associated with graphs on the dual lattice, which are not covered by any of
the patches. Such incomplete covering with only a single patch is shown in figure 15.
Consequently, even if the patches are large there can always be few small graphs which
cannot be embedded into them and which produce an error in even the lowest order
coefficients.

Even though the above explanation seems to be convincing, the fact that already the lowest
coefficients g3 (see table 2) are marked by a considerable error, �12%, is slightly worrying.
How can we examine quantitatively the source of this error? The coefficient g3 would be
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Figure 15. Covering of a fragment of the Penrose lattice (left) with copies of a patch consisting
of 18 thick and 10 thin rhombi (right). Central sites of patches are marked by black dots. One can
see that the covering is not complete, there are holes not covered by any of the patches.

correct if every site of valence 3 (with three neighbours) was embedded in at least one of the
14 round-shaped start patches shown in figure 5. This condition can be examined in terms
of the ‘cut-and-project’ method, in particular through the acceptance domains (ADs) of the
patches. The AD of a patch G denoted by A(G) is, in the case of the Penrose lattice, a planar
convex geometrical figure the area of which is proportional to the embedding number of the
patch G in the lattice. For example, the embedding numbers of graphs in (figures 6–12) were
obtained by analysing the corresponding acceptance domains. A site of valence three g can be
embedded in a graph G = {ri |i = 1, . . . , p} if and only if the acceptance domain A(G) after
an appropriate shift by s⊥ belongs to A(g). The shift cannot be random; it has to be chosen in
such a way that its parallel component s‖ corresponds to one of the vectors from G. In other
words, the following condition:

∃i=1,...,14
[A(G(i)) − s(i)

⊥
] ⊂ A(g) (25)

where s(i)

‖ ⊂ G(i) is equivalent to the coefficient g3 having the correct value. Here we refrain
from checking this condition but it is not difficult to do it and nor would it be if the set of start
patches was changed. Besides, since the size of A(G) decreases rapidly when the number of
sites of G increases, it is not obvious that for every set of fairly large start patches G(i) the
condition will be satisfied. Indeed, even a glimpse of figure 15 tells us that the condition may
not be satisfied; a site of valence 3 belongs to the white-coloured part of the lattice, i.e., is not
covered by any copy of the patch.

The next step in our research is to analyse the quasiperiodic Q-state Potts models,
especially for Q = 3, 4 because the Harris-Luck criterion implies that quasiperiodic order
should be strong enough to alter the critical behaviour in these cases. The main problem here
consists in calculating partition functions for finite patches. This can be done, for instance,
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by improving the FLM [30] where the expansion for a particular Q is obtained from partition
functions with smaller Q values. Work in this direction is in progress.
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